skip to main content


Search for: All records

Creators/Authors contains: "Mitarai, Satoshi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hydrothermal ecosystems face threats from planned deep‐seabed mining activities, despite the fact that patterns of realized connectivity among vent‐associated populations and communities are still poorly understood. Since populations of vent endemic species depend on larval dispersal to maintain connectivity and resilience to habitat changes, effective conservation strategies for hydrothermal ecosystems should include assessments of metapopulation dynamics. In this study, we combined population genetic methods with biophysical models to assess strength and direction of gene flow within four species of the genusAlviniconcha(Aboucheti,Akojimai,AstrummeriandAhessleri) that are ecologically dominant taxa at Western Pacific hydrothermal vents. In contrast to predictions from dispersal models, among‐basin migration inAbouchetioccurred predominantly in an eastward direction, while populations within the North Fiji Basin were clearly structured despite the absence of oceanographic barriers. Dispersal models and genetic data were largely in agreement for the otherAlviniconchaspecies, suggesting limited between‐basin migration forAkojimai, lack of genetic structure inAstrummeriwithin the Lau Basin and restricted gene flow between northern and southernAhessleripopulations in the Mariana back‐arc as a result of oceanic current conditions. Our findings show that gene flow patterns in ecologically similar congeneric species can be remarkably different and surprisingly limited depending on environmental and evolutionary contexts. These results are relevant to regional conservation planning and to considerations of similar integrated analyses for any vent metapopulations under threat from seabed mining.

     
    more » « less
  2. Abstract

    Climate change manifestation in the ocean, through warming, oxygen loss, increasing acidification, and changing particulate organic carbon flux (one metric of altered food supply), is projected to affect most deep‐ocean ecosystems concomitantly with increasing direct human disturbance. Climate drivers will alter deep‐sea biodiversity and associated ecosystem services, and may interact with disturbance from resource extraction activities or even climate geoengineering. We suggest that to ensure the effective management of increasing use of the deep ocean (e.g., for bottom fishing, oil and gas extraction, and deep‐seabed mining), environmental management and developing regulations must consider climate change. Strategic planning, impact assessment and monitoring, spatial management, application of the precautionary approach, and full‐cost accounting of extraction activities should embrace climate consciousness. Coupled climate and biological modeling approaches applied in the water and on the seafloor can help accomplish this goal. For example, Earth‐System Model projections of climate‐change parameters at the seafloor reveal heterogeneity in projected climate hazard and time of emergence (beyond natural variability) in regions targeted for deep‐seabed mining. Models that combine climate‐induced changes in ocean circulation with particle tracking predict altered transport of early life stages (larvae) under climate change. Habitat suitability models can help assess the consequences of altered larval dispersal, predict climate refugia, and identify vulnerable regions for multiple species under climate change. Engaging the deep observing community can support the necessary data provisioning to mainstream climate into the development of environmental management plans. To illustrate this approach, we focus on deep‐seabed mining and the International Seabed Authority, whose mandates include regulation of all mineral‐related activities in international waters and protecting the marine environment from the harmful effects of mining. However, achieving deep‐ocean sustainability under the UN Sustainable Development Goals will require integration of climate consideration across all policy sectors.

     
    more » « less